Открылся! Жидкая вода.
Откуда на замёрзших планетах жидкая вода?
Солнечная система не устаёт удивлять нас, и, возможно, одной из самых больших неожиданностей стал тот факт, что Земля – не единственный мир, на поверхности которого есть жидкая вода
Солнечная система не устаёт удивлять нас, и, возможно, одной из самых больших неожиданностей стал тот факт, что Земля – не единственный мир, на поверхности которого есть жидкая вода.
Да, конечно, на Марсе иногда появляется немного воды, но такие миры, как луна Юпитера Европа, луна Сатурна Энцелад и даже далёкий Плутон обладают огромными подповерхностными океанами, причём на некоторых из этих миров воды ещё больше, чем на Земле.
Высокая отражающая способность поверхности ледяной луны Сатурна, Энцелада, говорит о присутствии в большом количестве постоянно обновляющегося льда, чего не наблюдается ни на одной другой луне в Солнечной системе
Однако, в отличие от Земли или даже Марса, эти миры так далеко отстоят от Солнца и там так холодно, что даже самые высокие температуры на поверхности не добираются до температуры плавления льда. Так как же на них сохраняется жидкая вода?
Начнём с того, как ведёт себя вода у нас на Земле.
Вода в трёх состояниях: жидком, твёрдом (лёд) и газообразном (невидимый водяной пар в воздухе). Облака – это скопление водяных капель, сконденсировавшихся из насыщенного паром воздуха.
На Земле вода может существовать в трёх состояниях: твёрдом, жидком и газообразном, в зависимости от температуры. Ниже 0° C вода замерзает и превращается в лёд; выше этой точки и ниже 100° C вода жидкая; выше 100° C вода существует в виде газообразного пара. Именно так нас учат в школе, и по большей части это верно.
Но существуют некоторые условия, при которых вода может начать вести себя совсем по-другому. К примеру, если вы живетё на большой высоте, например, в Боготе (Колумбия), Кито (Эквадор), Эль-Альто (Боливия) – а в каждом из этих городов живёт более миллиона человек — то вода у вас кипит при гораздо меньшей температуре.
Фазовая диаграмма воды, с указанием различных видов льда, жидкого и газообразного состояний, и условий, при которых они возникают. Заметьте, что ниже -22° C жидкая вода существовать не может ни при каком давлении.
Всё оттого, что давление влияет как на точку кипения, так и на точку замерзания. В глубинах космоса без атмосферы жидкая вода существовать не может; она может существовать либо в твёрдой, либо в газообразной фазах. Но на Земле при пониженном давлении вода кипит при пониженной температуре, а если приложить достаточно большое давление, то лёд тает и становится жидким.
Последний факт часто удивляет людей, до тех пор, пока не просишь их вспомнить о коньках. Без коньков на льду очень скользко и вам трудно контролировать ваши движения или достичь трения; ваши ботинки скользят по замёрзшей поверхности льда. Но с коньками всё давление вашего веса концентрируется на лезвии, что увеличивает давление на лёд и заставляет его временно плавиться.
Фигуристы оставляют следы на льду, поскольку их коньки, скользя по поверхности, оказывают давление, достаточное для превращения льда в воду
Стоит учесть и ещё один факт: точка замерзания воды изменяется в зависимости от того, что в ней растворено. Если вы когда-нибудь клали водку в морозилку, вы знаете, что смесь воды и 40% алкоголя замерзает не при температуре замерзания воды, ей нужна температура гораздо ниже.
Наш океан с растворённой в нём солью тоже обладает пониженной точкой замерзания по сравнению с чистой водой: порядка -2° C при примерно 4% солёности. Поэтому можно опустить температуру ниже замерзания воды и всё равно остаться с жидкой водой – в зависимости от того, что в ней ещё есть. Это одна из наиболее удивительных особенностей Марса, где чистая жидкая вода вообще не должна существовать.
Потёки воды на склонах, вроде этих — на южном склона кратера на дне каньона Меласс — сначала постепенно вырастают, а потом исчезают, заполняясь пылью с марсианского ландшафта. Известно, что они являются следствием потоков жидкой солёной воды
При давлениях и температурах, существующих на поверхности Марса, жидкой воды физически не должно быть. Но благодаря высокому содержанию соли в некоторых видах марсианской почвы, вода, конденсируясь на поверхности, может существовать в жидкой фазе. Потоки воды, идущие вниз по склонам стенок кратеров, стали первым прямым свидетельством наличия жидкой воды вне Земли.
Но если заглянуть ещё дальше в Солнечную систему, посмотреть на миры вроде Европы, Энцелада, или даже на Плутон – там мы не найдём воды на поверхности.
Европа, одна из крупнейших лун Солнечной системы, движется по орбите вокруг Юпитера. Под её замёрзшей ледяной поверхностью находится жидкий океан, подогреваемый приливными силами Юпитера
Пристальное изучение этих миров открывает лишь лёд. Да, это водяной лёд, что даёт нам надежду, но температуры на этих мирах, расположенных в несколько раз дальше, чем Земля от Солнца, не только никогда не приближаются к показателю в 0° C — что необходимо для появления жидкой воды на поверхности Земли — но даже никогда не приближаются к температуре, позволившей бы жидкой воде существовать при любом давлении. И всё же, если на этих мирах углубиться под поверхность льда, мы приблизимся к ней, поскольку подо всем этим льдом существует огромное давление.
Плутон и Харон в отредактированном цвете; изображения получены с камеры межпланетной станции “Новые горизонты”. Замёрзшая поверхность Плутона – это ещё не всё; на большой глубине у него есть подповерхностный океан жидкой воды
Требуется атмосфера толщиной в 100 км, чтобы создать атмосферное давление, которое мы ощущаем на уровне моря – однако чтобы удвоить это давление, нужно всего лишь 10 метров воды. На другом мире лёд легко может достигать тысячи метров в толщину, и создавать огромные давления, приближающие нас к жидкой фазе воды. Но даже при наличии солей во льду жидкая вода всё равно не появится без ещё одного дополнительного фактора: источника тепла. К счастью, у каждого из этих миров есть источник тепла: близко расположенная массивная планета-компаньон.
«Равнина Спутника» на Плутоне. Геологические особенности, выявленные станцией «Новые горизонты», говорят о наличии подповерхностного океана под обширной и глубокой ледяной коркой на поверхности Плутона, простирающейся по всей карликовой планете
У Европы есть Юпитер, у Энцелада есть Сатурн. У Плутона есть луна Харон. Вся эта троица, комбинируя крупную массу и относительно близкое расположение, оказывает весьма серьёзное приливное воздействие на эти миры. И эти силы не просто приводят к небольшим деформациям внешних слоёв – они растягивают, сжимают и раскалывают внутренности этих миров, из-за чего те разогреваются.
Если учесть количество приливного тепла и добавить оказываемое льдом давление и соль, существующую под внешними слоями льда, можно получить искомое: жидкий океан под ледяной поверхностью.
Приливных сил, действующих на луну Сатурна Энцелад, достаточно для того, чтобы разорвать ледяную корку и разогреть внутренности, что заставляет подповерхностный океан извергать в космос воду на высоту в сотни километров
Европа демонстрирует огромные трещины на поверхности, свидетельства тех моментов, когда там ломался лёд и на поверхность выступала вода. Подповерхностный океан Энцелада – наиболее зрелищный, жидкая вода извергается из него и поднимается в космос на сотни километров над поверхностью.
Эти водяные столбы Энцелада настолько сильны, что отвечают за образование одного из колец Сатурна – кольца Е. Наконец, под замёрзшей поверхностью Плутона, что, возможно, оказалось одним из самых неожиданных сюрпризов, имеется жидкий водяной океан. А если там есть вода, тепло и растворённые химические соединения, то вполне возможно – хотя пока лишь гипотетически – что под поверхностью этих миров можно найти что-то поинтереснее простой воды.
Иллюстрация внутренностей луны Сатурна Энцелада, где показан глобальный жидкий водяной океан, расположенный между скалистым ядром и ледяной коркой. Толщина слоёв не в масштабе.
Может ли существовать жизнь на мире, где солнечный свет никогда не достигает жидкого океана, способного служить домом для этой жизни? Это возможно, и потенциально проверить эту гипотезу можно будет сначала на Энцеладе. Наличие гейзеров даёт фактическую возможность солнечному свету катализировать некоторые из биохимических молекул, способных породить жизнь, перед тем, как они снова упадут на ледяную поверхность луны.
За достаточно долгое время над ними может скопиться достаточно льда, чтобы давление заставило лёд расплавиться – и этот процесс в принципе может создать долгосрочный цикл появления жизни на этом мире. И чтобы выяснить это, нам не придётся копать этот мир или втыкать в него зонд на большую глубину – нужно просто отправить космический корабль мимо одного из гейзеров Энцелада и взять из него пробу. Может ли жизнь за пределами Земли быть настолько легко доступной для нас внутри Солнечной системы? Возможно, если нам повезёт, когда-нибудь мы узнаем об этом. опубликовано econet.ru
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:
Открытие 2017. Да здравствует жидкая вода!
БЛ-15
Доброго времени суток, форумчане.
Сегодня я наконец-то открылся по жидкой воде. Несмотря на пасмурный день и отсутствие поклевок – было круто. Еще никогда так рано я не был на реке со спиннингом – просто нужно было снять зуд.
Месяц назад я был тут – был белоснежный снег, лед чуть более метра. Со 130 буром и его 100 сантиметров не хватало чтобы пробурить лунку.
Сегодня – почти полное отсутствие снега и прошлогодняя трава – местами по пояс.
Вода очень мутная, присутствует не слабое течение – приманку практически не видно. На поклевку надежд практически не было.
Зато попробовал новый поппер от rapala, а именно Rapala Skitter Pop SP05.
Это мой первый именитый боец. До этого использовал исключительно китайские нонеймы.
Разница просто колосальна.. Как он булькает. Был бы щукой – точно бы съел его.
Кругом журчат ручьи, некоторые напоминают настоящие водопады.
На реке несмотря на моросящий дождь – красота.
Видел много уток, маневрирующих между льдинами. При забросе поппера чуть было не попал по голове ондатре, не вовремя всплывшей на поверхность. Она была в шоке)
Подводу итог выезда – зуд снят, приманки опробованы. Ждем прозрака.
Чудеса воды
Вода обладает удивительными свойствами, но почему она уникальна?
Вода! Мы пьем ее, готовим с ней пищу, моемся и плаваем в ней – и в основной принимаем воду как данное. Эта прозрачная и безвкусная жидкость является настолько неотъемлемой частью нашей жизни, что мы редко задумываемся над ее удивительными свойствами. Без воды мы бы умерли через несколько дней, а наши тела состоят на 65% из воды. Вода необходима для растворения минералов и кислорода, для очищения наших тел от отходов жизнедеятельности и для транспортировки питательных веществ по нашему телу. Вода – единственное вещество, которое имеет эти свойства. Как мы увидим, она имеет намного больше удивительных характеристик, указывающих на то, что вода была спроектирована “в точности” для жизни. См. также Дизайн воды).
Жидкая вода
Существует три состояния воды: твердое, жидкое и в виде газа. Все три существенны для живых организмов:
1. В твердом состоянии она поддерживает форму
2. В жидком виде вода способна течь и принимать форму емкости, сохраняя тот же общий объем.
3. В виде газа она увеличивается в объеме для заполнения как формы, так и размера емкости.
Чтобы молекулы реагировали, самое лучшее – это когда они близко друг от друга, но при этом свободно перемещаются. Это именно то, что обеспечивает вода в жидком состоянии. Таким образом, вода – это идеальная среда для тысяч химических реакций, проходящих в каждой клетке каждого организма.
Но из всех температур во вселенной – от –270 °C в космическом пространстве до десятков миллионов градусов внутри звезд, вода остается жидкой в очень узком температурном диапазоне. При нормальном атмосферном давлении вода остается жидкой в диапазоне 0–100°C. Поэтому не удивительно, что Земля – это единственно известное место во вселенной, которое содержит жидкую воду. Для этого необходимо иметь звезду правильного типа – не слишком яркая и не слишком тусклую, таким образом, не слишком большую и не слишком маленькую. Планета должна находиться на правильном расстоянии от звезды (смотрите также Солнце: наша особенная звезда).
Почему лед такой скользкий?
Истинной причиной является еще одно необычное свойство воды – молекулы на поверхности льда вибрируют сильнее, чем в состоянии жидкости, хотя они и не перемещаются. Это придает поверхности “квазижидкое” свойство, то есть жидкоподобное. 4
Температурный буфер
Еще одно важное свойство воды – это ее высокая удельная теплоемкость (энергия, которую необходимо сообщить телу для повышения его температуры на данную величину).
Это означает, что необходимо много энергии для нагрева воды (почти в десять раз больше, чем для такой же массы железа), и она должна много энергии потерять, чтобы остыть. Таким образом, большое количество воды на нашей планете поддерживает температуру Земли стабильной.
С другой стороны, континенты нагреваются и остывают довольно быстро, что и хорошо в комбинации с относительно стабильной температурой водных масс. В результате разные части атмосферы нагреваются по-разному, что порождает ветер. Это важно для поддержания свежести воздуха.
Когда жидкость испаряется, она втягивает и потребляет теплоту с окружающей среды. Это значит, что мы имеем полезный способ охлаждения – потение. Важная часть этого – высокая у воды латентная теплота испарения (энергия, необходимая для перевода тела из данного агрегатного состояния- в другое). Это означает, что нужно намного больше энергии для испарения воды, чем для большинства других жидкостей.
Таким образом, нам нужно относительно мало воды для охлаждения. Если бы мы потели бы другой жидкостью, необходимое количество должно было быть огромным.
Поверхностное натяжение
Вода обладает очень высоким поверхностным натяжением – сила, которая стремится удерживать площадь поверхности минимальной. Она выше у воды, чем у сиропообразной жидкости, как глицерин.
Поверхностное натяжение воды стремится делать пузырьки и капли сферическими, и оно достаточно сильное для поддержания на поверхности легких объектов, включая некоторых насекомых.
Что еще важнее, так это то, что биологические компоненты могут сосредотачиваться около поверхности, ускоряя множество жизненно важных реакций
Сила воды
Хотя обычно вода выглядит спокойной и мирной, если много воды движется достаточно быстро, она может перемещать валуны размером с автомобиль и вырезать глубокие каньоны, вырезая даже в твердой породе. Если вода течет очень быстро, происходит особенно разрушительный процесс, называемый кавитацией – для деталей смотрите Интервью с Др. Эдмондом Хольройдом.
Также, на химическом уровне вода быстро разлагает много важных больших молекул в живых клетках. В то время как живая клетка обладает многими гениальными ремонтирующими механизмами, ДНК не может сохраняться в воде вне клетки. 5 Недавняя статья в New Scientist также описывала этот факт как “головную боль” для исследователей, работающих над эволюционными идеями происхождения жизни. 6 В статье говорится об этом, как о “плохой новости”, что также демонстрирует материалистическую предвзятость. Но действительно плохая новость – это, конечно же, вера в эволюцию (все создало само себя), которая доминирует над объективной наукой. [Для более детального описания смотрите Происхождение жизни: проблема полимеризации.]
Вода: суперрастворитель
Вода очень близка к “универсальному растворителю”. Много минералов и витаминов могут транспортироваться по всему организму после того, как они растворились. Растворенные ионы натрия и калия чрезвычайно важны для нервных импульсов.
Вода также растворяет газы, такие как кислород с воздуха, давая возможность живущим в воде организмам использовать кислород. Вода, будучи главным компонентом крови, 1 также растворяет углекислый газ, продукт отхода производства энергии во всех клетках, и транспортирует ее в легкие, где углекислый газ выдыхается. 2
Однако, истинно универсальный растворитель был бы бесполезным, так как никакая емкость не смогла бы его удержать!
Но вода отталкивается жирными компонентами, так что наши клетки имеют мембраны, сделанные из них. Много наших протеинов содержат частично жирные участки, и они склонны сворачиваться, будучи отталкиваемы окружающей водой. Это частично является причиной многих и разнообразных форм протеинов. Эти формы важны для выполнения жизненно важных функций.
Взгляд вглубь льда
Чрезвычайно важное и необычное свойство воды – расширяться, когда она замерзает, в отличие от большинства других жидкостей. Именно поэтому айсберги плавают. Фактически, вода сжимается по мере охлаждения, но только пока не достигнет 4 °C – тогда она начинает снова расширяться. Это означает, что ледяная вода более плотная, так что она склонна подниматься вверх. Это очень важно. Большинство жидкостей под действием холодного воздуха остывают, и холодная жидкость опускается вниз, вынуждая еще больше жидкости подниматься и охлаждаться воздухом. В конечном итоге вся жидкость потеряет тепло, отдав его воздуху, и будет замерзать с самого дна до верха, пока не замерзнет.
Но с водой не так – ее холодная часть, будучи менее плотной, остается на поверхности, позволяя теплым частям оставаться внизу и избегать отдачи тепла воздуху. Таким образом, поверхность может быть замерзшей, но рыба, тем не менее, живет в воде подо льдом. Если бы вода была бы как другие вещества, большие водные массы, как, например, Большие Озера на Севере Америки, замерзли бы полностью в глыбы, уничтожив жизнь.
- Земля на 70% покрыта водой. Океаны содержат около 1370 миллионов кубических километров воды. Общее количество дождя, выпадающего на землю, составляет около 110 300 кубических километров.
- Только 1% воды в мире пригоден и доступен для потребления людьми. Приблизительно 97% воды слишком соленая и 2 % находится в форме льда. Эти 2% все еще ошеломляющие 29 миллионов кубических километров воды, заключенные в огромные ледниковые покровы и ледники Земли.
- Австралия – самый сухой в мире населенный континент, имеющий наименьший сток, и 70 % ее территории является пустыней.
- При производстве автомобиля потребляется около 150,000 литров воды.
- Природная вода содержит в себе растворенные минеральные соли, которые придают ей вкус. Чистая вода безвкусна.
Почему вода уникальна?
Наименьший строительный компонент воды – молекула воды. Она содержит 2 атома водорода, прикрепленных к атому кислорода в V-образной форме под углом 104°. Молекула воды полярная, то есть атом кислорода имеет негативный электрический заряд, в то время как два атома водорода позитивно заряжены. Именно поэтому вода может растворять столько много веществ, как, например, соль, которая также имеет электрически заряженные строительные компоненты; вода не растворяет жир, который состоит их незаряженных молекул.
Также, молекула воды притягивается довольно сильно к другим молекулам воды посредством водородных связей.
Эти связи в десять раз слабее, чем обычные химические связи, но достаточно сильные чтобы сделать воду жидкой при комнатной температуре. При этом похожее соединение, не имеющее водородных связей, сероводород, является газом. Водородные связи ответственны за высокое поверхностное натяжение воды, высокую удельную теплоемкость и латентную теплоту испарения воды.
Форма молекулы и водородные связи означают, что лед имеет очень открытую шестиугольную кристаллическую структуру, которую можно прекрасно продемонстрировать огромным разнообразием снежинок. Эта структура занимает много места, но она обваливается, когда лед таит, так что жидкая вода имеет более высокую плотность.
Поэтому лед всплывает. Последнее исследование показывает, что молекулы воды формируют кластеры в жидком состоянии, а именно клеткоподобные структуры с шести молекул. 7 Это объясняет многие уникальные свойства воды.
Другое недавнее исследование показывает, что, возможно, существуют два типа водородных связей в воде – один в два раза сильнее, чем другой.7 Это смогло бы объяснить, почему вода остается жидкой на протяжении довольно широкого температурного диапазона. Таяние разрушает только слабые связи, в то время как кипячение разрушает также более сильные связи. Это исследование также показывает, что изменение с сильных на слабые связи требует определенной температуры, одна из которых – 37 °C. Это температура нашего тела, предполагающая, что это одно из многих свойств нашего сложного дизайна.
Вода, Библия и наука
Есть по крайней мере, два отрывка в Писании о воде, которые показывают, что Библия предвосхитила современную науку. Первая ссылка говорит о водном цикле – испарение, облака, дождь:
Иов 36:26–28: «Вот, Бог велик, и мы не можем познать Его; число лет Его неисследимо. Он собирает капли воды, они во множестве изливаются дождем: из облаков каплют и изливаются обильно на людей»
Вторая ссылка – это упоминание о “путях морей” в Псалмах. Это место в Писании сподвигнуло пионера океанографии Мэтью Маури (1806–1873) составлять карту водных течений. 8 Как Маури отмечал, “Библия авторитетна во всем, чего она касается”— не только доктрин, но также в науке и истории. Его работа произвела революцию в судоходстве, радикально уменьшив время путешествий кораблей.
Маури воздавал славу Богу за свои открытия. И нам всем следует прославлять Бога за чудеса воды и быть благодарными Ему за ее многие полезные свойства и применения.
Ссылки и примечания
- Но кровь уникальна. Химически они слишком отличается, чтобы произойти от морской воды, не смотря на утверждение в статье “кровь” в Encyclopedia Britannica (15th Ed., 1992) 2:290 Вернуться к тексту.
- Фактически, только 5% CO2 транспортируется как таковой в растворе. 88% перемещается в форме двууглекислого иона (HCO3-), pH буфера, который помогает поддерживать наш pH (кислотно-щелочной уровень) постоянным.Смотрите “Respiration and Respiratory Systems”, Encyclop?dia Britannica (15th Ed., 1992) 26:742. Вернуться к тексту.
- Atkins, Physical Chemistry (Oxford University Press, 2nd Ed., 1982), p. 193. Вернуться к тексту.
- D. Kestenbaum, New Scientist 152(2061/2):19, 21/28 Dec., 1996; C. Seife, Science 274(5295):2012, 20 Dec. 1996. Вернуться к тексту.
- T. Lindahl, Instability and decay of the primary structure of DNA, Nature 362 (6422):709–715, 1993. Вернуться к тексту.
- R. Matthews, Wacky Water, New Scientist 154(2087):40–43, 21 June 1997. Вернуться к тексту.
- R. Matthews, ссылка. 6. Вернуться к тексту.
- See Ann Lamont, «21 Великих ученых, которые верили Библии», Creation Science Foundation, Australia, 1995, pp. 120–131. Вернуться к тексту.
На Марсе обнаружена текущая жидкая вода
Ученые заявили об открытии летних потоков воды, стекающих со скал и стен кратера, на Марсе. Представьте, что вы открываете шкаф, а там — Нарния. Примерно о таком же по значимости открытии заявило агентство NASA. «Следуй за водой», — этот девиз давно стал важнейшим для NASA. Осталось обнаружить на Марсе жизнь.
Жидкая вода стекает по стенам каньона и кратера в летние месяцы Марса, согласно заявлению ученых, обнаруживших этот факт в процессе изучения Красной планеты с использованием новейших современных инструментов. Открытие существенно увеличивает шансы на обнаружение нами хоть каких-либо следов жизни, бывшей и существующей поныне.
Струйки воды оставляют длинные темные потоки на марсианской поверхности, которые могут достигать сотен метров в теплые месяцы, прежде чем высыхают осенью, когда температура поверхности падает. Изображения, сделанные с орбиты Марса, показывают скалы и отвесные стены долин и кратеров, с прожилками летних потоков, которые объединяются в наиболее активных точках, чтобы сформировать сложные веероподобные узоры.
Ученые не уверены, откуда берется вода, но она может подниматься от подземного льда или соленых водоносных горизонтов, либо же конденсироваться из тонкой атмосферы Марса.
«Сегодня на поверхности Марса есть жидкая вода, — заявил Майкл Мейер, ведущий ученый программы NASA по изучению Марса. — По этой причине мы подозреваем существование там потенциально обитаемой среды».
Вот как выглядят эти потоки:
Кратер Гейла
На фото: темные потоки до нескольких сотен метров длиной, как полагают, свидетельствуют о существовании жидкой воды.
Кратер Гарни
Ручейки стекают вниз по стенкам кратера и образуются, когда температура повышается до -23 градусов по Цельсию. Они появляются весной и вытягиваются до ста метров летом, постепенно высыхая к осени.
Область Coprates Chasma в экваториальном регионе
Прежние миссии на Марс рассказали нам о водном прошлом планеты. Фотографии, отправленные на Землю еще в 70-х годах, показали поверхность, усеянную высохшими реками и равнинами, которые некогда покрывали огромные древние озера. В начале этого года NASA представило доказательства того, что океан мог покрывать половину северного полушария планеты в далеком прошлом.
Постепенно, марсианские зонды начали присылать данные о том, что планета может быть все еще влажной. Порядка десяти лет назад, Mars Global Surveyor сделал снимки того, что могло быть водой, прорвавшейся и обтекающей камни и другие осколки скал. В 2011 году камера высокого разрешения аппарата MRO засняла небольшие потоки воды, стекающей по стенкам кратера с конца весны до ранней осени. Не питая особых иллюзий, ученые миссии назвали потоки «повторяющимися наклонными линиями», или RSL.
Потом ученые обратились к другому инструменту на борту MRO для анализа химического состава таинственных потоков RSL. Люйендра Ойха из Технологического института Джорджии в Атланте и его коллеги использовали спектрометр на MRO, чтобы просмотреть инфракрасный свет, отраженный от крутых скалистых стенок, когда темные полосы начинают появляются и до момента, когда они вырастают на полную длину под конец марсианского лета.
В работе, опубликованной в Nature Geosciences, группа ученых описывает, что обнаружила инфракрасные сигнатуры гидратированных солей, когда темные потоки имели место, но не обнаружила их после исчезновения потоков. Гидратированные соли — смесь хлоратов и перхлоратов — это дымный след, указывающий на наличие воды во всех четырех изученных местах: кратеры Гейла, Паликира и Горовитца, а также большой каньон Coprates Chasma.
«Эти места могут быть лучшими для поиска сохранившейся жизни вблизи поверхности Марса, — говорит Альфред Макьюэн, планетарный геолог из Аризонского университета и старший автор исследования. — Хотя будет очень важно обнаружить свидетельства существования древней жизни, будет довольно трудно понять ее биологию. Современная жизнь была намного более информативной».
Поток появляются только когда температура поверхности Марса поднимается выше -23 градусов Цельсия. Вода может течь при таких условиях, потому что точка замерзания солей ниже точки замерзания воды.
«Загадка заключалась в том, чем представлен этот поток? Предположительно водой, но до сих пор мы не имели спектральной сигнатуры, — говорит Мейер. — С ней же, мы можем заключить, что RSL производятся водой, взаимодействующей с перхлоратами и образующей соленый ручей, стекающий вниз по склонам».
Джон Бриджес, профессор планетарных наук в Университете Лестера, сказал, что исследование было захватывающим, но может создать опасения для космических агентств. Потоки можно использовать для поиска водяных источников на Марсе, сделать их основными местами поиска жизни и будущих пилотируемых миссий. Однако агентствам придется избегать возможности загрязнения других планет микробами с Земли, что делает влажные регион довольно трудными для посещения. «Это дает им много пищи для размышлений», — говорит он.
В настоящее время ученые пытаются выяснить, откуда берется вода. Пористые породы под поверхностью Марса могли бы удерживать замороженную воду, которая тает в летние месяцы и просачивается на поверхность.
Третья возможность состоит в том, что соли марсианской поверхности поглощают воду из атмосферы, пока не наберут достаточно, чтобы пустить ее вниз по склону. Этот процесс, известный как плывучесть, наблюдается в пустыне Атакама, и там появившиеся в результате процесса влажные пятна являются единственным известным местом, где могут выжить микробы.
«Это увлекательная часть работы, — говорит Бриджес. — Наш взгляд на Марс меняется и мы будем долго обсуждать его в ближайшем будущем».
Все за сегодня
Политика
Экономика
Наука
Война и ВПК
Общество
ИноБлоги
Подкасты
Мультимедиа
Наука
Ученые открыли новое состояние воды
Одна из базовых вещей, которые мы узнаем на уроках естествознания в школе, это то, что вода может существовать в трех разных состояниях: в виде твердого льда, жидкой воды или газообразного пара. Но недавно международная группа ученых обнаружила признаки того, что жидкая вода на самом деле может существовать в двух разных состояниях.
Проводя исследовательскую работу — результаты были опубликованы потом в International Journal of Nanotechnology — ученые неожиданно обнаружили, что у воды температурой от 50 до 60℃ меняется ряд свойств. Этот признак возможного существования второго жидкого состояния воды разжег горячую дискуссию в научных кругах. Если это подтвердится, то открытие найдет применение во множестве областей, включая нанотехнологии и биологию.
Агрегатные состояния, которые еще называют «фазами», — ключевое понятие учения о системах атомов и молекул. Грубо говоря, система, состоящая из множества молекул, может быть организована в виде определенного числа конфигураций в зависимости от ее общего количества энергии. При высоких температурах (а значит, при большем уровне энергии) молекулам доступно большее число конфигураций, то есть они менее жестко организованы и двигаются относительно свободно (газовая фаза). При более низких температурах у молекул в распоряжении меньше конфигураций и они находятся в более организованной фазе (жидкой). Если температура опустится еще ниже, они примут одну определенную конфигурацию и образуют твердое тело.
Эта общее положение вещей для относительно простых молекул, таких как диоксид углерода или метан, у которых три ясно различаемых состояния (жидкость, твердое тело и газ). Но у более сложных молекул есть большее число возможных конфигураций, а значит и количество фаз возрастает. Прекрасная иллюстрация этого — двойственное поведение жидких кристаллов, которые формируются из комплексов органических молекул и могут течь, как жидкости, но сохраняют при этом твердую кристаллическую структуру.
Так как фазы вещества определяются его молекулярной конфигурацией, многие физические свойства кардинально меняются, когда вещество переходит из одного состояния в другое. В вышеупомянутом исследовании ученые измеряли несколько контрольных свойств воды температурой от 0 до 100 ℃ при нормальных атмосферных условиях (чтобы вода была жидкостью). Неожиданно они обнаружили резкие отклонения в таких свойствах как, например, поверхностное натяжение воды и коэффициент преломления (показатель, отражающий, как свет проходит через воду) при температуре около 50℃.
Особая структура
Как это возможно? Структура молекулы воды, H₂O, очень интересна и может быть изображена в виде своего рода стрелки, где атом кислорода располагается вверху, а два атома водорода «сопровождают» его с флангов. Электроны в молекулах стремятся распределиться ассиметричным образом, из-за чего со стороны кислорода молекула получает отрицательный заряд по сравнению со стороной водорода. Эта простая структурная особенность ведет к тому, что молекулы воды начинают определенным образом взаимодействовать друг с другом, их противоположные заряды притягиваются, образуя так называемую водородную связь.
Контекст
Мир физики в 2017 году
НАСА: на Марсе есть жидкая вода
Вода против газа
Вода из бутылок в 300 раз дороже водопроводной
Slate 28.07.2013
Это позволяет воде во многих случаях вести себя иначе, чем это делают, согласно наблюдениям, другие простые жидкости. Например, в отличие от большинства других веществ определенная масса воды занимает больше места в твердом состоянии (в виде льда), чем в жидком, из-за того, что ее молекулы образуют специфическую регулярную структуру. Другой пример — поверхностное натяжение жидкой воды, которое в два раза больше, чем у других неполярных, более простых жидкостей.
Вода довольно проста, но не слишком. Это значит, что единственное объяснение проявившейся дополнительной фазе воды — то, что она ведет себя немного как жидкий кристалл. Водородные связи между молекулами поддерживают определенный порядок при низких температурах, но могут приходить и в другое, более свободное состояние при повышении температуры. Этим объясняются значительные отклонения, наблюдаемые учеными во время исследований.
Если все подтвердится, выводы авторов могу найти множество применений. Например, если изменения в окружающей среде (скажем, температуры) влекут за собой изменения в физических свойствах вещества, теоретически это можно использовать при создании аппаратуры зондирования. Или можно подойти более фундаментально — биологические системы состоят в основном из воды. То, как органические молекулы (например, протеины) взаимодействуют друг с другом, вероятно, зависит от того, как молекулы воды образуют жидкую фазу. Если понять, как молекулы воды в среднем ведут себя при разных температурах, можно прояснить, как они взаимодействуют в биологических системах.
Это открытие — отличная возможность для теоретиков и экспериментаторов, а также прекрасный пример того, что даже самое привычное вещество может скрывать в себе секреты.
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.
Агрегатные состояния воды: лед, жидкость, газ, плазма
Вода — основа жизни и в природе она может находиться в трех основных состояниях: твёрдом, жидком и газообразном. Однако, искусственно можно создать условия, при которых вода переходит в состояние плазмы.
В этой статье мы разберем, почему вода может быть в жидком, твердом и газообразном состояниях, и при каких условиях меняются ее агрегатные состояния.
Жидкое состояние воды в природных условиях планеты Земля преобладает.
Твердое состояние воды
Вода в твердом состоянии – это лёд и снег. Некоторые не понимают, к какому агрегатному состоянию воды относится иней. Конечно, к твёрдому! Это мелкая ледяная крошка, замерзшие капли росы.
Твердая – это замороженная вода. Когда она замерзает, ее молекулы отодвигаются подальше друг от друга, делая лед менее плотным, чем жидкость, т.е. вода в твердом состоянии занимает больший объем, чем в жидком.
Большинство веществ при снижении температуры сжимается, а вода – расширяется, и в этом ее уникальная особенность.
Замерзает – это значит, что при 0 градусов Цельсия вода кристаллизуется и переходит из жидкого состояния в твердое. Наличие в воде солей снижает температуру замерзания.
На школьных олимпиадах встречается такой интересный вопрос: какой металл, находясь в расплавленном состоянии, может заморозить воду? Ответ – ртуть, которая начинает плавиться при температуре -39 градусов Цельсия. Понятно, что жидкая ртуть при температуре от -38 до 0 способна заморозить воду, отбирая у нее тепло.
Несмотря на то, что самое распространенное на нашей планете — жидкое состояние воды, значительная ее часть (2/3 всех пресноводных запасов) находится в замороженном виде. Площадь ледников – около 11% всей суши Земли.
Если жидкое состояние пресной воды переходит в твердое при 0 градусов Цельсия, то морская вода средней солености замерзает примерно при -1,8 градусах Цельсия.
Жидкое состояние воды
Вода в жидком состоянии встречается на нашей планете не только в реках и океанах. Облака состоят из крошечных капелек воды и кристалликов льда, и дождь – это тоже жидкая вода.
Также вода в жидком состоянии просачивается через почву и образует подземные водные горизонты, из которых черпается основная масса питьевой воды.
Вода в жидком состоянии отличается высокой прилипчивостью к различным твердым материям. Сама по себе она не является «влажной», но легко делает влажными большинство твердых материалов.
Жидкая вода легко переходит в твердое и газообразное состояние. Главным образом, это зависит от температуры. Но свою роль играет и давление.
Физический переход воды из жидкого состояния в газообразное называется испарением, потому что газообразное состояние воды называется паром.
Как жидкое состояние воды превращается в газообразное? Когда мы кипятим воду, она превращается из жидкости в газ, или водяной пар. Когда его часть остывает, мы видим небольшое облако, которое и называют паром. Хотя, если мы его видим, то это уже жидкое состояние воды, т.е. скопление ее микроскопических капелек.
Пар — это вода в газообразном состоянии, которое образуется, когда вода кипит или испаряется. Настоящий пар невидим; однако слово «пар» часто ошибочно относят к влажному пару, видимому туману, как аэрозолю водяных капель, образующихся при конденсации водяного пара.
И тут всплывает такое понятие, как «точка росы». Это температура воздуха, которая меняется в зависимости от давления и влажности, ниже которой водный пар начинает конденсироваться в водяные капли и образуется роса. Т.е. агрегатное состояние воды из газообразного состояния меняется на жидкое.
Закипает жидкая пресная вода при 100°C (градусах Цельсия) или 212°F (градусах Фарингейта), в условиях нормального атмосферного давления. Чем ниже давление (например, в горах), тем выше температура кипения.
Состояние газа
Итак, вода в газообразном состоянии – это пар. Утверждение, что большая часть воды в гидросфере находится в газообразном состоянии – не верно.
Не все хорошо себе представляют, в каком состоянии вода способна испаряться. Оказывается, вода в твердом состоянии испаряется так же, как и жидкая, только медленнее! Скорость испарения зависит от температуры. Т.е. в газообразное состояние вода может переходить прямо из твердого, минуя жидкое.
Испаренная с поверхности Земли вода в газообразном состоянии образует облака и тучи
Четвертое агрегатное состояние: плазма
Все знают, в каких трех состояниях вода находится в окружающей природе. Однако, ученые знают и четвертое состояние воды – плазму, которую называют гидроплазмой.
Водяной пар можно нагреть до такой температуры (2 200 -13 900°С, или 4 000- 25 000 ° F), что молекулы воды распадаются и получается просто смесь атомов водорода и кислорода в виде плазмы. Там динамически может присутствовать некоторое количество молекул воды, но всё равно эта смесь ионов и молекул будет водородно-кислородной плазмой.
Вообще плазма – это такое состояние вещества, которое настолько насыщено энергией, что от атомов отлетают электроны. Не говоря уже о разрушении молекулярных структур и кристаллических решеток.
Плазменное состояние воды в природе не встречается, однако оно всё больше интересует ученых в плане возобновляемых источников энергии. Очень заманчивая идея – получение из воды топлива в виде горючего водорода, который реагирует с кислородом и опять образует воду…
Как меняются агрегатные состояния
В принципе, агрегатное (физическое) состояние воды, как и любого другого вещества, зависит от температуры и давления. В природных условиях Земли возможны только три состояния веществ: твёрдое, жидкое и газообразное. Это и есть ответ на вопрос «в каких трех состояниях вода находится в природе».
Также теперь Вы знаете ответы на многие другие интересные вопросы типа «какой металл, находясь в расплавленном, т.е. жидком, состоянии, может заморозить воду, т.е. превратить ее в лёд» и т.п.
И Вы имеете понятие, в каком агрегатном состоянии может находиться вода в природе и в искусственных условиях.
Источники:
http://econet.ru/articles/180599-otkuda-na-zamyorzshih-planetah-zhidkaya-voda
http://altfishing-club.ru/blog/292/entry-1725-otkrytie-2017-da-zdravstvuet-zhidkaia-voda/
http://www.origins.org.ua/page.php?id_story=213
http://hi-news.ru/research-development/na-marse-obnaruzhena-tekushhaya-zhidkaya-voda.html
http://inosmi.ru/science/20161228/238458941.html
http://vodavomne.ru/svojstva-vody/agregatnye-sostoyaniya-vody